

Il s'agit bien sûr d'invocations directes de méthodes de la vue parent vers le contrôleur ou le

rendu de vue partielle, aucune nouvelle requête http n'est envoyée au serveur.

(1)
 /!\ Un bundle nommé jqueryval est bien enregistré mais il n'est pas inclus par

_Layout.cshtml

UpdateModel renseigne Controller.ModelState et soulève une InvalidOperationException.

TryUpdateModel renseigne Controller.ModelState mais ne soulève pas d'exception.

Un ValidationFor permet de fournir les erreurs en javascript, mais sans les afficher

(contrairement au ValidationMessageFor.) Un ValidationSummary peut alors centraliser leur

affichage.

AddModelError permet d'ajouter une erreur globale (de niveau "modèle" et non au niveau

d'une propriété particulière) en fournissant une chaîne vide en guise de nom de propriété.

La méthode helper ValidationSummary offre le paramètre excludePropertyErrors pour
n'afficher que les erreurs de niveau modèle.

Bien pratique lorsque les erreurs de niveau propriété sont déjà affichées
à côté des zones de saisie concernées.

Dans la vue, les EditorFor, TextBoxFor, etc. travailleront sur le modèle
envoyé à la vue, ou, à défaut, sur les données qui ont été placées dans
le ModelState lors de l'invocation de l'action.

Les helpers sont régulièrement surchargés pour permettre de fournir les attributs HTML

sous forme d'anonyme ou de dictionnaire.

Elles peuvent également supporter que l'objet passé soit un dictionnaire et non un anonyme

(un dictionnaire, un anonyme… ce sont des "Object"s.)

La méthode utilitaire HtmlHelper.ObjectToDictionary(object) (qui fait ce qu'elle

dit…) peut vous faciliter la vie pour mettre en œuvre vos propres helpers.

HtmlHelper offre d'autres membres de classe utiles.

DisplayExtensions.DisplayFor est pratique lorsque le type du modèle est connu, on utilise

alors une lambda de sélection de propriété à la place du nom (string) de la propriété dont le

label doit être affiché.

DisplayExtensions.Display est plus souple, elle permet d'aller chercher le label

correspondant à une propriété à partir de son nom, et ce, quelque soit le type du modèle.

Les mêmes remarques s'appliquent aux méthodes de EditorExtensions.

