Windows Setup Checklist

You will need a PC running Windows 7 or newer.

1. (Optional) Install Visual Studio 2012 or newer. Xamarin integrates into the
Microsoft IDE tools and allows you to develop Xamarin.Android and
Xamarin.iOS applications directly with VS. If you do not have access to Visual
Studio, or prefer not to use it, Xamarin Studio is also available and will be
installed with the Xamarin tools, however you will be limited to
Xamarin.Android.

2. Install Xamarin tools using the installer. You can download the Xamarin unified
installer from xamarin.com/download. The installer will automatically download
any missing tools and SDKs needed for iOS/Android development.

a. Note: this step will likely take a while depending on what is already
installed on the computer since it has to download fairly large SDK
installs to configure the machine.

3. Launch Visual Studio or Xamarin Studio - it will be in your Start Screen / Start
Menu, or you can locate it with the search features of Windows.

4. Verify you are on the stable (this is the default). You can check this in the
Tools > Options > Xamarin menu.

Pairing Windows with a Mac host for iOS development

If you plan to do any development for iOS, you will need Visual Studio 2012 or newer
and a Mac host with the Xamarin tools installed. You will do your development on the
Windows computer with Visual Studio, and the Mac is used to build and package up
the iOS application using Apple’s tools.

The computers will need to be on the same network and be able to ping each other.
This section details how to connect the two computers together through the Xamarin
Build Host and assumes you have already setup both the Mac and Windows
computers properly.

You can connect your Mac to the Windows computer using the Xamarin Build Host
with the following steps:
1. On the Mac, open the Xamarin Build Host (it is located in the Applications
folder, or you can use Spotlight to find it).
2. Ifitis already paired to a different installation, then you will need to unpair it first
— you can only connect to a single instance of Visual Studio (one Mac per VS
installation).
3. Click the Pair button to initiate the pairing process, this will present a network
code which you will need to enter on your Windows system:

http://xamarin.com/download

(800 Xamarin.i0S Build Host

.,)) ((t-
K2

Xamarin.iOS Build Host

Use 'Pair' to pair Visual Studio to this machine. ‘ 1 c gAg 9 ‘

- (.00 Pair with Visual Studio__

Enter this PIN when prompted on your PC to build
Pair Xamarin.iOS projects from Visual Studio

Version 7.0.4.171 | Copy to clipboard | [Clese |

4. Switch to Windows and open Visual Studio, in either the Tasks pane, or the
Tools > Options > Xamarin menu, you can pair the computer to the Mac host.
You can also attempt to open an iOS solution — this will initiate the pairing
process as well.

& Connect to a Xamarin.iOS Build Host

Please install Xamarin on a nearby Mac, open the Xamarin.iOS Build Host application
(type "xamarin build host" into Spotlight), then click "Pair".

4 = 301pm & e

LSRR xamarin build host

Shaw All In Finder
Applications X Xamarin.|0S Build Host
wieb searches 4 Search Web for “xamarin b”
3 Search Wikipedia for “xamarin b*
Spotlight Preferences...

5. Select Continue and then select your Mac on the network (or type the specific
IP address in if the auto-detect feature isn't working).

£ Connect to a Xamarin.iOS Build Host

One or more Xamarin.iOS Mac Build Hosts were detected on your network.
Please select one and click Connect.

Chomsky.local

£ Searching network for build hosts...

‘ Diagnosa...‘ | Configure Host Manually | ‘ Connect H Close |

6. Select the Mac and click Connect to proceed. It will then prompt for the PIN
displayed on the Mac host, enter the pin and click Pair to finish the connection.

] Pair With 192.168.222.1(192.168.222.1)
1C9A99
% Successfully paired with 192.168.222.1
‘\) (192.168.222.1)

Setup Android Emulators

To test Android applications, you can either deploy to a physical device (preferred),
or use an Android emulator. If you plan to use an emulator, we recommend you use
Xamarin Android Player as it delivers higher performance over the Android SDK
emulator.

1. Download the Xamarin Android Player install from
https://xamarin.com/android-player, for Windows you can download
the standalone package, which includes Virtual Box.

2. Once installed, run the application and download a pre-configured
image, there are several to choose from.

3. Launch the image from the Xamarin Android Player app by selecting
it in the list and clicking the Play button.

4. It should then show up in the emulators list in Xamarin or Visual
Studio.

https://xamarin.com/android-player

Android SDK Emulators

The Xamarin installer will create a few emulated devices for you, but you will want
to adjust these and create one with a newer version of Android. We recommend a

phone device running at least 4.4.2.

To create or adjust an Android emulator, you must run the Android SDK Emulator
Manager. This can be started in Visual Studio with Tools > Android > Open
Android Emulator Manager menu option. An example definition is shown below:

L] Edit Android Virtual Device (AVD)
AVD Mame: Kitkat-Phone
Device: Mexus 5 (4.0", 480 = 200: hdpi)
Target: Android 4.4.2 - APl Level 19
CPU/ABL: Intel Atomn (x86)
Keyboard: [Hardware keyboard present
Skin Skin with dynamic hardware contrels

Front Camera:

Back Camera:

Memery Opticns:

Internal Storage:

5D Card:

Emulaticn Opticns:

Emulated

Naone

RAM: | 384 VM Heap: | 32

oy
200

(® Size: | 64

() File:

[#] Snapshot [[]Use Host GPU

Override the existing AVD with the same name

Out of the box Google Android Emulators are very slow. To improve this, you can
install the Intel HAXM Drivers. This additional install provides hardware
acceleration for x86-based emulators on Intel VT-enabled systems. The HAXM
drivers are free to use and published by Intel. If you are using the Android SDK

emulator, this is a must.

MIB w

Cancel

1. Close any running emulators

2. From the Intel website, download the latest HAXM virtualization

engine from

https://software.intel.com/en-us/android/articles/intel-hardware-a

ccelerated-execution-manager.

Install the HAXM engine, and restart your computer if prompted.

4. Change any Android image you have created to use the Intel Atom
(x86) CPU image as shown in the above screenshot - the acceleration
only works for x86 images.

o

Warning!

HAXM run simultaneously with VirtualBox can cause stability issues. Both can exist
together on the same machine, but it is best not to run both Xamarin Android
Player- and HAXM-based emulators at the same time.

Verify your Setup

1. Launch Xamarin Studio (OS X or Windows) or Visual Studio (Windows).

2. The IDE should prompt you to either start a trial with Xamarin, or enter to your
registered Xamarin account. Go ahead and do one of these two steps so you
be able to build full applications, including the T-shirt test app.

3. Verify that you have all the Android SDK versions you will need. We
recommend installing 4.0 through 4.4 (or even Android "L" preview if you want
to try some of the new features). You can get to the Android SDK options using
the Tools > Android > Start Android SDK Manager in Visual Studio.

Android SDK Manager S=

Packages Tools
SDK Path: C:\Users\Mark\AppData\Local\Android\android-sdk |
Packages ‘
Name API Rev. Status 2
] Tools
Android SDK Tools 23.0.2 [Installed
Android SDK Platform-tools 20 + Installed
Android SDK Build-tools 20 = Installed
Android SDK Buile i Not
Android SDK Buile I
Android SDK s
Android SDK Build-tools
Android SDK L
Android SDK
Android SDK
Android SDK Buile is
Andreid SDK Build-tools
[V1E2 Android L (AP 20, L preview)

Oooooooooooogd

1811
181
180.7
17

= Installed

Show: [v]Updates/New [v]Installed [] Obsolete Select Mew or Updates

Sort by: (@) AP level () Repository Deselect All

|

Unzipping Sources for Android SDK, AP| 20, revision 1(87%)

4. Download the Xamarin T-shirt application from
https://xamarin.com/c-sharp-shirt, unzip it onto your desktop (or some other
easily accessible location) and open the solution.

a. Note: Be careful about path lengths on Windows — mobile projects tend
to create deep subdirectories and you can quickly exceed the path
length on Windows machines. It is best to place the solutions into
shorter paths such as your desktop or right in the root of the drive.

http://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager/
http://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager/
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
https://xamarin.com/c-sharp-shirt

5.

Open the solution (.sln) using your IDE of choice and following the
instructions below for iOS, Android or both.

Testing iOS on Windows with Visual Studio

1.

2.

Make sure your setup is connected to the Mac build host (see above
instructions to verify this).

Make sure the XamarinStore.iOS project is the active project in Visual
Studio (you can right-click and choose Set As Startup Project to change it if
necessary).

Select the Debug configuration and i0OS Simulator from the toolbar.

FORMAT TOOLS TEST ARCHIT

Debug ~ iPhoneSimulater -

Select the iPhone 5 i0S 8.0 simulator from the iOS toolbar. If you don't see
the toolbar, right click in an open space in the toolbar area and make sure
i0S is checked for display.

/ HELP
iPhone 5i05 2.0 - O =) x= 9

Build and run the application by clicking the Start button in the toolbar - this

should launch the iPhone simulator on the Mac.

Testing Xamarin.Android on Windows

1. Make sure the XamarinStore.Droid project is the active project in Xamarin
or Visual Studio (you can right-click and choose Set As Startup Project to
change it if necessary).

2. Select the Debug configuration and AnyCPU from the toolbar.

3. Select an available Andoid emulator in the Android toolbar. If you don't see
the toolbar choices, right click in an open space in the toolbar area and make
sure Android is checked for display.

_ = [A]-KitKat-Phone - (i) W l_la ™

4. If you do not see any emulators, then you will need to configure at least one
You can open the Android SDK tool with the Tools > Android > Open
Android Emulator Manager menu option as described above.

5. Build and run the application by clicking the Start button in the toolbar - this
should launch the Android emulator (if it's not running), install the
application and then run it.

Troubleshooting
The most common issues encountered are: Missing SDK versions and Android
emulator issues.

If the i0S Application fails to build on Visual Studio verify that the iOS SDK on the
Mac and the i0S SDK on the Windows machine are the same - this means you are
running in the same Xamarin channel (we recommend stable) and the two machines
are synchronized. You can check this in the Tools > Options > Xamarin > iOS
dialog - click the "Check Now" option next to SDK Synchronization.

Options ?

Search Options (Ctrl+E) e Mac Build Host

HTML Designer ~
Indent Guides i Marks-MacBook-Pro-2_local Find Mac Build Host
MuGet Package Manager
Office Tools
Productivity Power Tools Xamarin for Visual Studio Updates
ReSharper

SOL Server Tools
Text Templating
ViCommands 12
Web Essentials Apple SDK
Web Performance Test Tools
Windows Forms Designer
Workflow Designer

[+ Motify me about | Stable v | updates. Check Now
_—

SDK Synchronization Check Now @

KXcode path {e.g: "/Applications/Xcode.app", blank to use default Xcode):

[A~ S

Kamarin
Android Settings

[» Kaml Styler

W

If the Android application fails to build on either environment, then verify you have
the proper Android SDK versions installed. You will often get an error that reads
something like "The required Android SDK x.xx is missing...".

The T-Shirt application is setup to require Android 4.0, but you can change it to a
newer version through the project options (just double-click on the
XamarinStore.Droid project, or right click and select Properties). The version is in
the Android Application section in Xamarin and Visual Studio:

e 00 Project Options - XamarinStore.Droid

¥ General . . .
Android Application

£+ Main Settings

¥ Build o -
Application name | Xamarin Store

I» General

¥+ Custom Commands Package name |com.xamarin.XamStore

3t Configurations Application icon |@drawable/icon E|

1t Compiler !

¥# Assembly Signing Version number |1

'):(- Output Nersignname 0.1

.., Android Build)

L,J Android Application Minimum Android version | Owverride - Android 4.0 (APl level 14) | -] [i]
* Run ’ | " :

Target Android version |Autr.:-mat|c - use target framework version | o ‘ o
P> General)
¥ Custom Commands Install Location | Automatic | ~ |

¥ Source Code Required permissions |) accessCheckinProperties

.NET Naming Policies)
D AccessCoarselocation

4 Code Formatting) .
[AccessFinelLocation
=| standard Header
[AccesslocationExtraCommands
Mame Conventions
[AccessMockLocation
* Version Control

Cancel OK

Alternatively, you can use the Android SDK Manager to download the required SDK
libraries for 4.0 and then you should be able to build the application.

For emulator issues, we recommend launching the Android emulator before you run
your program and then keep it running. If Xamarin Studio or Visual Studio fails to

detect the emulator, then shutdown Xamarin Studio and restart it. It should detect it
on launch and then the emulator will show up in the available choices in the toolbar.

Note that the emulator must be running on the same machine. So, if you are running
Visual Studio in a Windows VM, you will need to launch an emulator in that VM to
see it. There is a technique you can use to connect to a networked instance of an
emulator using the adb command-line tool in the SDK. Ask the lab facilitator for help
if you want to try this advanced approach. We recommend you just run the emulator
in the same machine for simplicity.

